

FURTHER-FC

Further Understanding Related to Transport limitations at High current density towards future ElectRodes for Fuel Cells

Characterization of transport properties: thin film and CCL

Final Workshop

cea liten	Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center	Imperial College London	ΤΟΥΟΤΑ	
	PAUL SCHERRER INSTITUT	Hochschule Esslingen University of Applied Sciences		

Ionomer ultra-thin film hydration Quartz Crystal Microbalance

Average number of water molecule per SO₃⁻

Relative Humidity (%)

Wate uptake increases with RH and T

Very similar behaviour for HOPI and D2020

the European Unior

lonomer thin films properties

- ➤ Swelling
- ≻ H⁺ conductivity
- $> O_2$ transport properties

CCL properties

- Hydrophilicity/solvophilicity
- ➤ H⁺ conductivity
- ➤ e⁻ conductivity

the European Unior

Ionomer thin films properties

- > Swelling
- ≻ H⁺ conductivity
- $> O_2$ transport properties

CCL properties

- > Hydrophilicity/solvophilicity
- ≻ H⁺ conductivity
- ≻ e⁻ conductivity

Measurement of ionomer swelling with AFM in liquid cell:

- > Ultra-thin layers (< 10 nm) and thin fims produced via self assembly from IPA diluted dispersion
- > Measurement of HOPI/D2020 thickness in air then adding of water, measurement at exact same position in liquid
- > For thicker layers additional measurements: water at 50 °C then heating to 160 °C and measuring again in air, water and water at 50 °C
- ➤ +50 % thickness for ultra-thin layers and +30 % for thin layers in water. Same for HOPI and D2020.

Ionomer ultra-thin film proton conductivity

the European Unior

UNIVERSITY OF

1010 0 10 nm 10 nm OHOPI-30C 0 HOPI 80C 0 1 1 Nafion1100-30C Nafion1100-80C 3 (mS/m) σ (mS/m) 0.10.1O HOPI-10 nm (30C) HOPI - 10 nm (80C)-0.010.01 o \mathbf{O} Nafion 10 nm (30C)
HOPI - 10 nm (80C) 0.001 0.001 20 40 60 80 100 0 2 6 0 8 λ

Relative Humidity (%)

Conductivity of HOPI and Nafion thin film similar, possibly slightly lower conductivity for HOPI

Ionomer thin film proton conductivity

- Significant decrease in conductivity with the thickness of the film \succ
- Good agreement between CEA results and results from Karan et al. \succ

Ionomer thin film ionic current by AFM

Hochschule Esslingen University of Applied Sciences

Ionic current at different ionomer layer thickness

 \rightarrow Thin layers: equals lower conductivity

 \rightarrow Utra-thin layers: lamellar and parallel to surface, no 3D-network

Ionomer ultra-thin film O₂ transport properties

- New setup developped at CEA to measure in-plane proton conductivity and through-plane O₂ transport resistance (Patent in progress)
- \succ HOPI shows lower interfacial and inner O₂ transport limitations

Characterization of transport properties

the European Unior

lonomer thin films properties

- ➤ Swelling
- ≻ H⁺ conductivity
- $> O_2$ transport properties

CCL properties

- Hydrophilicity/solvophilicity
- H⁺ conductivity
- ➤ e⁻ conductivity

CCL Hydrophilicity

Water uptake: CL < Ionomer < Pt/HSAC

Cea

Less water in the CL than in the « individual » components

Less hysteresis between sorption and desorption

Pt/C takes water, not only ionomer

Ionomer reduces water uptake by catalyst (may block/fill nano pores)

Ionomer in CL is likely to absorb less water than bulk ionomer

Water vapor sorption isotherm

11/12/2024, FURTHER-FC, Final workshop, visio

CCL Hydrophilicity/Solvophilicity

Water and Solvent Uptake

Catalyst

HSAC: Less hydrophilic solvents wet catalyst more quickly: Hydrophobicity of pores

Graphitic catalyst: Less solvent adsorption (lower SA, only 20% as much water). Much more hydrophobic.

lonomer

25°C

D2020 ionomer: 2-fold more solvent adsorption (swelling/free space filling) using alcohols compared to water **HOPI:** Similar to D2020 for water, but even more alcohol adsorbed

^{11/12/2024,} FURTHER-FC, Final workshop, visio

CCL Effective proton conductivity Imperial College

CCL Effective proton conductivity Imperial College

Bruggerman factor gives estimate of tortuosity, $\sigma^{eff}=\sigma^{bulk}\epsilon_{ion}^{\gamma}$

Decreases with relative humidity and ionomer content as would be expected

Effective conductive, improves by an order of magnitudye between RH30-100% for all systems

> ~2-fold improvement between 0.5 and 0.8 I:C but little benefit above that

HOPI shows statistically significant ~2-fold improved proton conduction especially under v.dry and wet conditions

CCL Effective Electronic Conductivity – In plane

Co-funded by

the European Union

Imperial College London

Characterization of transport properties

Effective Electronic Conductivity – Through plane

London

Co-funded by

the European Unior

> Maximum compression consistently gives higher resistivity (damage?)

- Catalyst layer reduces magnitude of this effect (more points of contact)
- Increased RH fives decreased resistance by small amount in all cases (lubrication effect?)

