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Content of the presentation

FURTHER-FC: Multiscale Modelling

1. Objectives multiscale modeling

2. Modeling of ionomer films with MD

3. Modeling of catalyst layer on sub-µm scale

4. Microstructure resolved modeling of GDL/MPL and CCL

5. Single cell modeling
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Objectives of the work described

Main objectives:

• Improved understanding of performance limitations by modeling 
of processes in the cathode catalyst layer at all relevant scales:
• In the ionomer film with Molecular Dynamics

• On the sub-micrometer scale with Lattice-Boltzmann modeling

• On the single layer scale with Direct Numerical Simulation (DNS)

• On the cell scale with volume averaged models

• Development of multiscale modeling approach to connect lower 
scale mechanisms/material properties with cell performance

• Simulation-based interpretation of experimental observations

FURTHER-FC: Multiscale Modelling
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MD simulations of the ionomer film

• Objectives:
• Simulation of representative ionomer film structures in catalyst 

layer using Molecular Dynamics (MD)

• Determination of the oxygen and water transport in/transfer to 
the ionomer films

• Investigation of performance limiting processes on ionomer scale 
(poisoning by sulphonic group; Pt/ionomer interfacial water)

• Simulation of water contact angle on ionomer surface

Input
AFM analysis of 

ionomer properties

Molecular 
Dynamics 
simulation

Output
Transport properties 

of ionomer film
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MD simulations of the ionomer film

• Results:
• Ionomer self-assembly process for different substrates 

and different dispersions (water, isopropyl alcohol (IPA) 
and water-IPA mixture) simulated

• Abundance of sulphonic groups at ionomer/Pt interface 
even in ink/dispersion media

• Simulation of solvent evaporation confirm ionic cluster 
formation 

Self-assembly on different substrates in IPA 

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling

No ionic cluster in 
self-assembled films 
(think ink stage) in 
water and water/IPA 
dispersions

Drier film has 8-10 
ion pairs (SO3-/H+) 
in a cluster or 
domain
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MD simulations of the ionomer film

• Results:
• Limited work could be done on oxygen transport 

properties of the ionomer film due to lack of 
funding at UCA

• Preliminary calculations of oxygen density show 
similar trends as published by Jinnouchi et al. 
(2016): Oxygen density peaks at the Nafion/vapor 
free interface

• Water enrichment at Pt/Nafion interface which has 
multiple implications – facile proton transport (?), 
additional O2 transport due to water layer (?), and 
low local pH.

 to be investigated in future work

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling
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CCL on sub-micrometer scale

• Objectives:
• Identification of local transport losses on sub-µm scale

• Development of Lattice Boltzmann model for coupled transport 
and electrochemistry

• Derivation of effective local transport resistance distributions

• Investigations on the effect of CCL microstructure

Lattice 
Boltzmann

Output
Microstructure-
dependent local 

transport resistance

Inputs
• Catalyst microstructure
• Catalyst and ionomer distribution
• Contact angles
• Properties of the ionomer depending 

on the water content
• Local conditions  in CCL

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling
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CCL on sub-micrometer scale
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• Lattice Boltzmann model
• MRT LBM1 for diffusion of oxygen in primary and secondary pores and ionomer:

𝑓α 𝑥 + 𝑐αΔ𝑡, 𝑡 + Δ𝑡 = 𝑓α 𝑥, 𝑡 + 𝑄−1Λ𝑄 𝑓α 𝑥,𝑡 − 𝑓α
eq

𝑥, 𝑡

• Sorption processes with finite kinetics at interfaces (gas|ionomer, gas|water, 

ionomer|platinum)

𝑓α 𝑥A, 𝑡 + Δ𝑡 =
1
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1
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Δ𝑥
Δ𝑡
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• ORR at platinum surfaces realized as modified bounce back condition2

𝑓𝛼
O2 = 1 − 𝑘LB 𝑓ഥ𝛼

O2 ,

𝑘LB =
8𝑘ORRΔ𝑡

Δ𝑥
/ 1 +

𝑘ORRΔ𝑥

2𝐷N

• Output: local transport resistance distribution 𝑁(𝑅Pt) depending on CCL 

microstructure, where 𝑅Pt =
4𝐹𝑐𝑔

𝐻 𝑖lim
[1] Chen, L., Zhang, R., Kang, Q., Tao, W. Q. (2020), Chemical Engineering Journal, 391, 123590

[2] Molaeimanesh, G. R., Akbari, M. H. (2015), International Journal of Hydrogen Energy, 40, 5169

8



Pore 
space

CCL on sub-micrometer scale

• Ionomer properties
• from literature and experiments

• diffusion coefficient for oxygen in ionomer1

• Henry’s constant for oxygen absorption by 
ionomer1

• Ionomer oxygen transport resistance from CEA

• experiment: only total interface resistance

𝑅I𝑜 = 𝐻Io/𝑘Io = 𝐻Io 1/𝑘P,Io + 1/𝑘Io,Pt

• in simulations: contribution of interfaces

𝑘P,Io = 𝐻P,Io/ κ𝑅Io ,

𝑘Io,Pt = 𝐻P,Io/ 1 − κ 𝑅Io

• (in planar geometry, total resistance remains equal)

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling

PtIonomer

O2

[1]: K. Kudo, R. Jinnouchi, Y. Morimoto, Electrochimica Acta 209, (2016) 682
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FURTHER-FC: WP 4

CCL on sub-micrometer scale
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[1]: M. Ahmed-Maloum et al., International Journal of Hydrogen Energy 80 (2024) 39–56

ionomer distribution

• Distribution of micro pores:
• start from reconstruction of carbon and ionomer 

based on FIB-SEM1

• Calculation of micro porosity

𝜀𝑚𝑖𝑐𝑟𝑜 =
𝑉𝑚𝑖𝑐𝑟𝑜

𝑉𝑚𝑖𝑐𝑟𝑜+𝑉𝑐
= 1 −

1

𝜂𝑃𝑡
−1

𝐴𝐶𝐶𝐿𝜇𝑃𝑡
𝜚𝑐

1−𝜀𝑚𝑎𝑐𝑟𝑜 𝑉𝐶𝐶𝐿 – 𝐴𝐶𝐶𝐿
𝜇𝑃𝑡
𝜚𝑃𝑡

–
𝐼

𝐶

𝜚𝑐
𝜚𝐼𝑜

1

𝜂𝑃𝑡
−1

𝐴𝐶𝐶𝐿𝜇𝑃𝑡
𝜚𝑐

• Average pore size 3.125 nm diameter

• Internal carbon surface area 446 m2/g

• Distribution of pores at carbon surface
• distributed randomly just below the surface of carbon

• have small external entrance

• Distribution of pores inside carbon
• with overlap to preexistent micro pores 

• completely inside the original carbon

• replace original carbon with micro pores until desired 
micro porosity is achieved

micro pores
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CCL on sub-micrometer scale

• Distribution of platinum particles:
• distinction between internal|external platinum
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platinum particlesfinal geometry

• internal Pt:
• radius 1.2nm

• 82% of Pt particles

• 70% of total Pt
surface

• 74% of ECSA 

• external Pt:
• radius 1.6nm

• 18% of Pt particles

• 30% of total Pt
surface

• 26% of ECSA (because 
only 80% ionomer 
coverage)

• increase number of distributed platinum particles 
until Pt loading 0.2mg/cm2 is achieved

• thereby, distribute 81% internally, 19% externally

• platinum particles randomly distributed on 
external|internal carbon surface

• Finally, move external|internal particles in/out of 
carbon structure until roughness factor of 140m2/m2

0 10 20 30

0,0

0,1

0,2

d
is

tr
ib

u
ti
o
n
 o

f 
d
is

ta
n
c
e
s
 t
o

in
te

rn
a
l 
p
la

ti
n
u
m

 p
a
rt

ilc
e
s

distance [nm]

Electron 
tomography 
of catalyst 
obtained by 
CEA



CCL on sub-micrometer scale

• Liquid water distribution due to 
capillary condensation
• in macro pores

• pore size distribution estimated using 
GeoDict

• size threshold for flooded pores from 
RH of air:
𝑟cap 𝑅𝐻

= − 2𝑣𝑚
𝑠 𝑇

𝑅𝑇 log 𝑅𝐻
cos(𝜃)

• with surface tension 𝑠 𝑇 from [2]

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling
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show capillary condensation in 

primary and secondary pores
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[2] Teitelbaum, B.Y., Gertolova, T.A., Siederova, E.E. (1951), Zh. Fiz. Khim., 25, 911



CCL on sub-micrometer scale

• Results LBM
• Definition of transport resistance in different media:

𝑅Pt
med =

4𝐹𝑐g

𝐻med 𝑖lim
Pt,med

• Calculated from 

• arising limiting current per platinum area 𝑖lim
Pt,med

• entering oxygen concentration in pore space 𝑐g

• Simulation of reference MEA:

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling
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CCL on sub-micrometer scale

• Results LBM
• Application to different CCL materials:

• Graphitized carbon vs. HSAC  No micropores in 
graph. carbon; Pt distributed on carbon surface

• HOPI vs. D2020  Assume same microstructures 
but different ionomer properties (Henry constant, 
interfacial resistance)

𝐻HOPI =
𝐻D2020

2
, 𝑅int

HOPI=
𝑅int
D2020

2

 large variations in literature values1,2/experiments

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling

HSAC graph. carbon

0,2 0,4 0,6 0,8 1,0

4

6

8

10

12

14

 D2020 - Kudo - 353K

 D2020 - Kudo - 333K

HOPI - Jinnouchi

 HD2020(RH,353K)

 HD2020(RH,333K)

 HHOPI(RH,353K)

H
e

n
ry

's
 c

o
n

s
ta

n
t

RH
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[1]: K. Kudo, R. Jinnouchi, Y. Morimoto, Electrochimica Acta 209, (2016) 682

[2]: R. Jinnouchi et al., Nature Communications 12 (2021) 4956
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Single layer scale

• Objectives:
• Derivation of effective transport coefficients of GDL, MPL and CCL

• Methodology: Multi-scale approach:
1. MPL computation (FIB-SEM)

2. GDL computation (X-ray Tom.)

3. GDL/MPL assembly (X-ray Tom.)

4. CCL computation (FIB-SEM)

DNS

Outputs
• Volume averaged 

transport coefficients
• Effective contact 

angles

Inputs
• MPL/GDL/Catalyst microstructure
• Material contact angles
• Catalyst and ionomer distribution
• Properties of the ionomer 

depending on the water content 

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling
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Single layer scale

• DNS using sequential approach

• Effective diffusion tensor has been 
computed

•
𝜕𝑐

𝜕𝑡
= 𝛻. (𝐷 𝒙 𝛻c) At pore scale

•
𝜕𝐶𝐿1
𝜕𝑡

= 𝛻. (𝜖 𝒙 𝑫𝑳𝟏 𝒙 . 𝛻CL1) At first Darcy-scale

•
𝜕𝐶𝐿2
𝜕𝑡

= 𝛻. (𝜖 𝑫𝒆𝒇𝒇. 𝛻CL2) At second Darcy-scale

• Same calculation method for thermal and 
electrical conductivity

1. MPL computation (FIB-SEM)

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling
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Single layer scale

• Cracked MPL reduces GDL diffusivity by 
19% and uncracked MPL reduces GDL 
diffusivity by 25%

• GDL compression effect via resistance 
model

2. GDL/MPL computation (X-ray Tomo.)

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling
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Single layer scale

• CCL computation:
• 3D reconstruction of CCL 

microstructure from FIB-SEM images

• Ionomer reconstruction: ionomer 
partially occupying the pore space and 
ionomer thin films covering the 
carbon (in concave regions)

• Computations of effective oxygen 
diffusion and effective proton 
conductivity tensors
• Tensors are not isotropic

• Knudsen diffusion has significant impact 
on oxygen diffusion

• Liquid water in the primary pores found 
to have a significant impact 

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling
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Single layer scale

• CCL computation:
• Pore size distributions calculated with 

Porespy1

• Calculation of contact angle 
distribution: strongly dependent on 
ionomer distribution

• Effective contact angles calculated at 
different scales suitable for two-phase 
flow DNS or PNM computations of 
important properties for 
macrohomogeneous models such as 
the water retention curve or the 
relative permeabilities

• CCL water retention curve obtained

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling

[1] J. Gostick et al. PoreSpy: A python toolkit for quantitative analysis of porous media images, Journal of Open Source Software, (2019).
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Cell scale

• Objectives:
• Development and validation of single cell model including all 

relevant processes

• Include improved sub-models and relations derived from lower 
scale models

• Determination of the contributions of the different transport 
losses to the overall cell performance

Cell model

Output
• Transient simulations 

of cell performance
• Identification of 

contributions to 
performance losses

Inputs
• Properties of cell components
• Local transport resistance 

distributions from LBM
• Effective Transport properties from 

single component scale
• Dedicated electrochemical 

measurements for model validation

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling
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Cell scale

• Approach:

• Development of macro-homogeneous 2D multiscale cell 
model

• Transient

• 2D along-the-channel geometry

• Mass, charge and energy transport

• Novel ORR kinetics distinguishing between internal and 
external platinum and including surface coverage effects 
as well as local oxygen transport resistances

• Implementation on DLR fuel cell modeling framework 
NEOPARD-X 2.01

• Use of effective transport properties derived from lower 
scale models

• Parametrization and validation with dedicated ex-situ and in-
situ experiments

Catalyst layer
GDL & MPL

Cell scale

Catalyst layer
sub-µm scale

• GDL/MPL porosity and tortuousity
• MPL pore radius• CCL porosity and tortuousity

• CCL pore radius

• Local transport resistance

Public workshop, 11/12/2024, CEA/Grenoble + visio

[1]: A. Koksharov, A. Latz, T. Jahnke, Electrochimica Acta 495 (2024) 144482
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Cell scale

Transport models:

• Transport in channels:

• Free flow in channels described by Darcy-Brinkman

• Transport in electrodes:

• Multicomponent mass transport in porous electrodes 
(diffusion + convection)

• Charge transport (proton + electron) in electrodes

• Energy transport: species enthalpy and heat conduction

• Water sorption and transport in ionomer

• Transport in PEM:

• Proton transport

• Water diffusion and electroosmotic drag

• Hydrogen crossover

• Effective diffusion coefficients obtained with lower scale DNS 
simulation

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling

CCL properties value

Thickness 6 µm

Porosity2 0.55

Tortuosity3 2.188

Average pore radius2 30 nm

Frac. of platinum in micropores 70%

GDL/MPL properties (compressed)1 value

Thickness backing 74 µm

Thickness MPL + overlap region 76 µm

Porosity backing 0.74

Porosity MPL/overlap 0.6072

Tortuosity backing 1.69

Tortuosity MPL/overlap 2.776

Pore radius MPL 150 nm
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Cell scale

• Novel approach for oxygen reduction reaction rate calculation:

• Distinguish between external platinum (covered by ionomer) and internal platinum (in micropores of the carbon)

• 𝑟ORR = 𝑟ORR
int + 𝑟ORR

ext

• Rate of ORR depends on local oxygen activity at platinum surface  determined by local transport losses

• Integrate over contributions with distribution of local transport resistance 𝑁 𝑅Pt

𝑟ORR
int/ext

= 0׬
∞
𝑁 𝑅𝑃𝑡 𝑟ORR

𝑖𝑛𝑡/𝑒𝑥𝑡
(𝑅Pt) d𝑅Pt,

where 𝑟(𝑅𝑃𝑡) is the solution of  𝑟 = 𝑘 𝑎eq − 𝑟
𝑅𝑃𝑡

𝐶ref

𝛾

• Distribution 𝑁 𝑅Pt obtained from LBM on sub-µm scale

• For each RPt reaction rate is calculated by analytical approximation1

• ORR kinetics is described by modified Tafel kinetics with platinum oxide and ionomer coverage effect

• Internal platinum:

𝑘𝑖𝑛𝑡 = 𝑖0 1 − 𝜃PtOx 𝑒−
𝜔𝜃PtOx

𝑅𝑇 𝑒−
𝛼𝐹

𝑅𝑇
𝜂

• External platinum:

𝑘𝑒𝑥𝑡 = 𝑖0 1 − 𝜃PtOx − 𝜃ionomer 𝑒
−
𝜔𝜃PtOx

𝑅𝑇 𝑒−
𝛼𝐹

𝑅𝑇
𝜂

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling

ǁ𝑟approx = 𝑘
𝑎eq
𝛾

1 +
𝑎eq
𝛾−1

𝐴
1 − 4Δ𝑟max

𝐴Δ𝑟max

𝑏 𝐴𝑏

𝐴Δ𝑟max

𝑏 + 𝐴𝑏
2

.

[1] Jahnke, T., Baricci, A. (2022), Journal of The Electrochemical Society, 169, 094514

𝐴:=
𝐶ref

𝑘 𝑅local

Δ𝑟𝑚𝑎𝑥 =
𝛾

1
𝛾−1 − 𝛾

𝛾
𝛾−1

𝛾
1

𝛾−1 − 1 𝛾
𝛾

𝛾−1 + 𝛾
1

𝛾−1

𝐴Δ𝑟max
=

𝑎eq
𝛾−1

𝛾 𝛾
1

𝛾−1 − 1

𝑏 =
2 −2 ሚ𝐴 + 2 ሚ𝐴Δ𝑟max − ሚ𝐴 + 3 ሚ𝐴2 + 3 ሚ𝐴3 + ሚ𝐴4 Δ𝑟max − 1 2𝛽

Δ𝑟max( ሚ𝐴 + 1)

𝛽 =
𝛾

𝛾
𝛾−1 𝛾 − 𝛾2 + 2𝛾

3
𝛾−1 𝛾 + 2𝛾2 − 2𝛾

1
𝛾−1 𝛾 − 2𝛾2 − 𝛾

4
𝛾−1 𝛾 + 𝛾2 − 6𝛾

2𝛾
𝛾−1

𝛾
3𝛾+2
𝛾−1 + 3𝛾

3
𝛾−1 𝛾 − 2𝛾2 + 𝛾3 + 𝛾

2
𝛾−1 1 − 3𝛾 + 3𝛾2 − 𝛾3 + 3𝛾

4
𝛾−1 𝛾2 − 𝛾3
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Cell scale

• Simulation of cell performance:

• Hysteresis observed potentiodynamic polarization curves can be accurately 
described by the model. Major contributions: Transient catalyst surface 
coverage with platinum oxides and ionomer

• Same phenomena also responsible for low frequency inductive features in 
impedances  explain the discrepancy between Tafel slope and 
experimentally observed low frequency resistance

• Local transport resistance distribution leads to transport related 
performance losses already at low current densities!

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling

2 bar total pressure 1 bar total pressure 
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Cell scale

• Break down of transport resistance contributions at limiting current:

• Determine local oxygen concentrations at layer interfaces

• Calculate local RO2,local for each layer l

𝑅O2,local =
4𝐹Δ𝑐𝑙
𝑖𝑙𝑜𝑐𝑎𝑙

• Channel contribution important even at high flow rate (6 Nl/min ≙ λ=10 
@3A/cm2 in air) due to parabolic velocity profile

• CCL contribution strongly dependent on RH

• CCL contribution decreases from inlet to outlet (better humidification)

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling
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Cell scale

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling

Impedance at 2 bar; 0.1 bar O2; 80% RH; 0.8V

• Simulation of polarization curves under LCA conditions (2% 
oxygen; 80% RH; 80°C)

• “Knee” in polarization curve caused by transport limitations 
for internal platinum

• Very sensitive to distribution of interfacial resistance between 
ionomer|gas and ionomer|platinum interfaces

• Good agreement with LCA can be achieved with main 
contribution at ionomer|gas interface

• EIS simulation confirms accurate representation of processes
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Cell scale

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling

Comparison graph. carbon vs. HSAC: 
• Significantly lower voltage at low currents but higher limiting current
• LCA: significantly lower pressure dependent part probably due to inhomogeneity 

in GDL properties
Major differences in model parameters:
• No platinum in micropores; lower ECSA; ORR kinetics; GDL/MPL tortuosities
• Approx. 36% higher transport resistance for external Pt
• Hypothesis: higher platinum content at carbon surface as well as different carbon 

surface properties lead to different ionomer orientation  SO3 groups towards 
platinum surface

so3 so3

so3 so3

PtPt Pt

carbon
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Cell scale

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling

Comparison HOPI vs. D2020: 
• Higher catalyst activity
• More sudden transport limitation at higher currents

Major differences in model parameters:
• Lower Henry constant (𝑐𝑒𝑞 = 𝑐𝑔/𝐻) for HOPI  higher O2 conc. at catalyst

• Higher activity of external platinum
• Higher transport resistance for external platinum
• Significantly lower transport resistance for internal platinum
• Hypothesis: shift of interfacial resistance towards platinum interface
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Multiscale-modeling: conclusions

Development of multiscale modeling methodology to link material properties with cell 
performance

• Molecular Dynamics simulation of ionomer film:

• Simulation of ionomer self-assembly, solvent effects and solvent evaporation

• Preliminary results on oxygen and water distributions in ionomer film

• Lattice Boltzmann modeling of the CCL on sub-µm scale:

• Reconstruction of realistic CCL structures

• Simulation of oxygen transport and derivation of local transport resistance 
distribution

• DNS on GDL, MPL and CCL microstructures:

• 3D reconstructions of GDL, MPL and CCL

• Derivation of effective transport properties for oxygen, water and protons

• Volume averaged cell model

• Coupling of transport processes in all layers and electrochemistry in a 2D cell model

• Use of effective transport properties of lower scale models and novel formulation of 
ORR kinetic

• Enables description of transient behavior such as hysteresis and  EIS

• Was used for breakdown of transport losses and to compare different CCL materials

Public workshop, 11/12/2024, CEA/Grenoble + visio FURTHER-FC: Multiscale modeling
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